We still don’t know how much energy AI consumes - FT中文网
登录×
电子邮件/用户名
密码
记住我
请输入邮箱和密码进行绑定操作:
请输入手机号码,通过短信验证(目前仅支持中国大陆地区的手机号):
请您阅读我们的用户注册协议隐私权保护政策,点击下方按钮即视为您接受。
可持续发展

We still don’t know how much energy AI consumes

Companies must give us the chance to understand the environmental impact of the tech we use
00:00

{"text":[[{"start":8.49,"text":"The writer is a research scientist and climate lead at open-source AI platform Hugging Face"}],[{"start":16.04,"text":"With every query, image generation and chatbot conversation, the energy that is being consumed by artificial intelligence models is rising. Already, emissions by data centres needed to train and deliver AI services are estimated at around 3 per cent of the global total, close to those created by the aviation industry."}],[{"start":40.230000000000004,"text":"But not all AI models use the same amount of energy. Task-specific AI models like Intel’s TinyBERT and Hugging Face’s DistilBERT, which simply retrieve answers from text, consume minuscule amounts of energy — about 0.06 watt-hours per 1,000 queries. This is equivalent to running an LED bulb for 20 seconds. "}],[{"start":67.06,"text":"At the other extreme, large language models such as OpenAI’s GPT-4, Anthropic’s Claude, Meta’s Llama, DeepSeek, or Alibaba’s Qwen use thousands of times more energy for the same query. The result is like turning on stadium floodlights to look for your keys. "}],[{"start":87.75,"text":"Why is there such an enormous difference in energy consumption? Because LLMs don’t just find answers, they generate them from scratch by recombining patterns from massive data sets. This requires more time, compute and energy than an internet search.  "}],[{"start":107.13,"text":"Measuring precisely how big each AI model is and how much energy it is using is difficult. Companies with closed-source systems, like Google’s Gemini or Anthropic’s Claude, do not make their code publicly available and are protective of this information. That is why the internet is full of unverified claims about the quantities of energy and water that chatbot queries require, and how this compares with an internet search. "}],[{"start":138.87,"text":"The AI Energy Score project, a collaboration between Salesforce, Hugging Face, AI developer Cohere and Carnegie Mellon University, is an attempt to shed more light on the issue by developing a standardised approach. The code is open and available for anyone to access and contribute to. The goal is to encourage the AI community to test as many models as possible."}],[{"start":166.3,"text":"By examining 10 popular tasks (such as text generation or audio transcription) on open-source AI models, it is possible to isolate the amount of energy consumed by the computer hardware that runs them. These are assigned scores ranging between one and five stars based on their relative efficiency. Between the most and least efficient AI models in our sample, we found a 62,000-fold difference in the power required. "}],[{"start":201.59,"text":"Since the project was launched in February a new tool compares the energy use of chatbot queries with everyday activities like phone charging or driving as a way to help users understand the environmental impacts of the tech they use daily."}],[{"start":220.42000000000002,"text":"The tech sector is aware that AI emissions put its climate commitments in danger. Both Microsoft and Google no longer seem to be meeting their net zero targets. So far, however, no Big Tech company has agreed to use the methodology to test its own AI models."}],[{"start":238,"text":"It is possible that AI models will one day help in the fight against climate change. AI systems pioneered by companies like DeepMind are already designing next-generation solar panels and battery materials, optimising power grid distribution and reducing the carbon intensity of cement production."}],[{"start":260.1,"text":"Tech companies are moving towards cleaner energy sources too. Microsoft is investing in the Three Mile Island nuclear power plant and Alphabet is engaging with more experimental approaches such as small modular nuclear reactors. In 2024, the technology sector contributed to 92 per cent of new clean energy purchases in the US. "}],[{"start":287.19,"text":"But greater clarity is needed. OpenAI, Anthropic and other tech companies should start disclosing the energy consumption of their models. If they resist, then we need legislation that would make such disclosures mandatory."}],[{"start":304.09,"text":"As more users interact with AI systems, they should be given the tools to understand how much energy each request consumes. Knowing this might make them more careful about using AI for superfluous tasks like looking up a nation’s capital. Increased transparency would also be an incentive for companies developing AI-powered services to select smaller, more sustainable models that meet their specific needs, rather than defaulting to the largest, most energy-intensive options."}],[{"start":341.23999999999995,"text":"AI represents one of the biggest technological breakthroughs of our time. It will revolutionise our lives. But the technology comes with environmental costs that should be made clear to users and policymakers alike. In this era of climate crisis, making the energy use of AI more transparent is essential."}],[{"start":373.86999999999995,"text":""}]],"url":"https://audio.ftmailbox.cn/album/a_1747892335_4805.mp3"}

版权声明:本文版权归FT中文网所有,未经允许任何单位或个人不得转载,复制或以任何其他方式使用本文全部或部分,侵权必究。

生物计算机是如何“培育”的

澳大利亚初创公司Cortical Labs与英国的bit.bio共同打造了CL1,旨在创造“合成生物智能”。

工作中遇到问题?我的聊天机器人会给你发消息

大量由人工智能生成的投诉,意味着人力资源和客户服务部门将面临一种新的无端麻烦。

如何让孩子们重新开始阅读

如今,出于兴趣而阅读的年轻人比以往任何时候都少,这一趋势带来了广泛的经济和社会影响。我们能否扭转这一局面?

市值100亿美元的英国能源挑战者普拉克斯集团如何走向瓦解

林赛炼油厂所有者的倒闭是一个警示故事,说明一家缺乏足够财力来管理其庞大业务的公司所面临的风险。

与特朗普通话后俄罗斯对乌克兰发动创纪录空袭

美国停止交付关键拦截器后,克里姆林宫派出500多架伊朗设计的无人机。

印度证监会暂时禁止Jane Street交易证券

该监管机构指责这家总部位于纽约的交易公司实施了操纵衍生品市场的“险恶计划”。
设置字号×
最小
较小
默认
较大
最大
分享×